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Abstract

Textual network embedding leverages rich text information associated with the
network to learn low-dimensional vectorial representations of vertices. Rather
than using typical natural language processing (NLP) approaches, recent research
exploits the relationship of texts on the same edge to graphically embed text. How-
ever, these models neglect to measure the complete level of connectivity between
any two texts in the graph. We present diffusion maps for textual network embed-
ding (DMTE), integrating global structural information of the graph to capture
the semantic relatedness between texts, with a diffusion-convolution operation
applied on the text inputs. In addition, a new objective function is designed to effi-
ciently preserve the high-order proximity using the graph diffusion. Experimental
results show that the proposed approach outperforms state-of-the-art methods on
the vertex-classification and link-prediction tasks.

1 Introduction
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Figure 1: Three sentences from the DBLP dataset. Ver-
tices A and C are second neighbors, i.e., two vertices that
are not on the same edge but share at lease one common
neighbor (vertex B). The alignment words are colored.

Learning effective vectorial embeddings to rep-
resent text can lead to improvements in many
natural language processing (NLP) tasks. How-
ever, most text embedding models do not em-
bed the semantic relatedness between different
texts. Graphical text networks address this prob-
lem by adding edges between correlated text
vertices. For example, paper citation networks
contain rich textual information and the citation
relationships provide structural information to
reflect the similarity between papers. Graphical
text embedding naturally extends the problem
to network embedding (NE), mapping vertices
of a graph into a low-dimensional space. The
learned representations containing structure and textual information can be used as features for
network tasks, such as vertex classification [22], link prediction [14], and tag recommendation [31].
Learning network embeddings is a challenging research problem, due to the sparsity, non-linearity
and high dimensionality of the graph data.

In order to exploit textual information associated with each vertex, some NE models [13, 33, 19, 26]
embed texts with a variety of NLP approaches, ranging from bag-of-words models to deep neural
models. However these text embedding methods fail to consider the semantic distance indicated
from the graph. In [30, 24] it was recently proposed to simultaneously embed two texts on the same
edge using a mutual-attention mechanism. But in real-world sparse networks, it is intuitive that two
connected vertices do not necessarily share more similarities than two unconnected vertices. Figure 1
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presents three examples from the DBLP dataset. By aligning dynamic index and multi-dimensional,
the sentences of vertex A and vertex C are closer than the sentence of their common first neighbor,
vertex B. The relatedness between two vertices that are not linked by an edge cannot be preserved by
only capturing the local pairwise proximity.

We propose a flexible approach for textual network embedding, including global structural information
without increasing model complexity. Global structure information serves to capture the long-distance
relationship between two texts, incorporating connection paths within different steps. The diffusion-
convolution operation [2] is employed to build a latent representation of the graph-structured text
inputs, by scanning a diffusion map across each vertex. The graph diffusion, comprised of a
normalized adjacency matrix and its power series, provides the probability of random walks from
one vertex to another within a certain number of steps in the graph. The idea is to measure the level
of connectivity between any two texts when considering all paths between them. In this study, we
consider text-based information networks, but our model can be flexibly extended to other types of
content.

We further use the graph diffusion to redesign the objective function, capturing high-order proximity.
Unlike some NE models [27], that calculate the probability of vertex vi being generated by vj , we
preserve high-order proximity by calculating the probability of vertex vi given the diffusion map
of vj . Compared to GraRep [5], the proposed objective function is more computationally efficient,
especially for large-scale networks, because it does not need matrix factorization during training.
This objective function is able to scale to directed or undirected, and weighted or unweighted graphs.

To demonstrate the effectiveness of our model, we focus on two common tasks in analysis of textual
information networks: (i) multi-label classification, where we predict the labels of each text; and (ii)
link prediction, where we predict the existence of an edge given a pair of vertices. The experiments
are conducted on several real-world datasets of information networks. Experimental results show
that the DMTE model outperforms all other methods considered. The superiority of the proposed
approach indicates that the diffusion process helps to incorporate long-distance relationship between
texts and thus to achieve more informative textual network embeddings.

2 Related Work

Text Embedding Many existing methods embed text messages into a vector space for various NLP
tasks. Early approaches include bag-of-words models or topic models [4]. The Skip-gram model [16],
which learns distributed word vectors by utilizing word co-occurrences in a local context, has been
further extended to the document level via a paragraph vector [13] to learn text latent representations.
To exploit the internal structure of text, more-complicated text embedding models have emerged,
adopting deep neural network architectures. For example, convolutional neural networks (CNNs)
[10, 6, 34] have been considered to apply a convolution kernel over different positions of the text,
followed by max-pooling to obtain a fixed-length vectorial representation. Recursive neural tensor
networks (RNTNs) [25] have applied a tensor-based composition function over parse trees to obtain
sentence representations. LSTM-based recurrent neural networks (RNNs) [12] capture long-term
dependencies in the text, using long short-term memory cells. However, deep neural architectures
usually assume the availability of a large dataset, unrealistic for many information networks. When
the data size is small, some methods [18, 9] avoid over-fitting by simply averaging embeddings of
each word in the text, achieving competitive empirical results.

Network Embedding Earlier works including IsoMap [29], LLE [21], and Laplacian Eigenmaps
[3] transform feature vectors of vertices into an affinity graph, and then solve for the leading
eigenvectors as the embedding. Recent NE models focus on learning the vectorial representation of
existing networks. For example, DeepWalk [20] uses the Skip-gram model [16] on vertex sequences
generated by truncated random walks, learning vertex embeddings. In node2vec [8], the random walk
strategy of DeepWalk is modified for multi-scale representation learning. To exploit the distance
between vertices, LINE [27] designed objective functions to preserve the first-order and second-order
proximity, while [5] integrates global structure information by expanding the proximity into k-order.
In [32] deep models are employed to capture the nonlinear network structure. However, all these
methods only consider structural information of the network, without leveraging rich heterogeneous
information associated with vertices; this may result in less informative representations, especially
when the edges are sparse.

2



To address this issue, some recent works combine structure and content information to learn better
embeddings. For example, TADW [33] shows that DeepWalk is equivalent to matrix factorization, and
text features can be incorporated into the framework. TriDNR [19] uses information from structure,
content and labels in a coupled neural network architecture, to learn the vertex representation. CENE
[26] integrates text modeling and structure modeling by regarding the content information as a special
kind of vertex. CANE [30] learns two embedding vectors for each vertex where the context-aware
text embedding is obtained using a mutual attention mechanism. However, none of these methods
takes into account the similarities of context influenced by global structural information.

3 Problem Definition

Definition 1. A textual information network is G = (V,E, T ), where V = {vi}i=1,··· ,N is the
set of vertices, E = {ei,j}Ni,j=1 is the set of edges, and T = {ti}i=1,··· ,N is the set of texts associated
with vertices. Each edge ei,j has a weight si,j representing the relationship between vertices vi and
vj . If vi and vj are not linked, si,j = 0. If there exists an edge between vi and vj , si,j = 1 for an
unweighted graph, and si,j > 0 for a weighted graph. A path is a sequence of edges that connect two
vertices. The text of vertex vi, ti, is comprised of a word sequence < w1, · · · , w|ti| >.

Definition 2. Let S ∈ RN×N be the adjacency matrix of a graph whose entry si,j ≥ 0 is the weight
of edge ei,j . The transition matrix P ∈ RN×N is obtained by normalizing rows of S to sum to one,
with pi,j representing the transition probability from vertex vi to vertex vj within one step. Then an
h-step transition matrix can be computed with P to the h-th power, i.e., Ph. The entry phi,j refers to
the transition probability from vertex vi to vertex vj within exactly h steps.

Definition 3. A network embedding aims to learn a low-dimensional vector vi ∈ Rd for vertex
vi ∈ V , where d � |V | is the dimension of the embedding. The embedding matrix V for the
complete graph is the concatenation of {v1,v2, · · · ,vN}. The distance between vertices on the
graph and context similarity should be preserved in the representation space.

Definition 4. The diffusion map of vertex vi is ui, the i-th row of the diffusion embedding matrix
U, which maps from vertices and their embeddings to the results of a diffusion process that begins at
vertex vi. U is computed by

U =

H−1∑

h=0

λhP
hV, (1)

where λh is the importance coefficient that typically decreases as the value of h increases. The
high-order proximity in the network is preserved in diffusion maps.

4 Method

We employ a diffusion process to build long-distance semantic relatedness in text embeddings, and
global structural information in the objective function. To incorporate both the structure and textual
information of the network, we adopt two types of embeddings vs

i and vt
i for each vi vertex, as

proposed in [30]. The structure-based embedding vector vs
i is obtained by feeding the i-th row

of a learned structure embedding table Es ∈ RN×ds into a function. The text-based embedding
vector vt

i is obtained by applying the diffusion convolutional operation on the text inputs (see Section
4.2). Here dimensions of the structure embedding and the text embedding satisfy ds + dt = d. The
embedding of vertex vi is simply the concatenation of vt

i and vs
i , i.e., vi = vt

i ⊕ vs
i . In this work, vi

is learned by an unsupervised approach, and it can be used directly as a feature vector of vertex vi for
various tasks. The objective function consists of four parts, which measure both the structure and text
embeddings. The high-order proximity is preserved during training without increasing computational
complexity. The entire framework for textual network embedding is illustrated in Figure 3 where
each vertex is associated with a text.

4.1 Diffusion Process
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(b) Forth order diffusion graph.

Figure 2: (Left) Original graph only have connected edge e1,2, e1,3, e3,4 and e1,4. Here we plot it
as directed graph because we normalize the outgoing edges weight. (Right) Forth power diffusion
graph.

on the graph. Figure 2 gives an example of the smoothing effect of diffusion graph. This example only137

contains four nodes. The edges are normalized so the graph becomes directed. The original graph138

only have edge pair e1,2, e1,3, e3,4 and e1,4. However, the indirect relationship between other edge139

pairs are not considered. Diffusion graph can smoothing the whole graph with higher order. Thus140

those indirect relationships, like (n2, n4), can also be considered. As we can see from figure 2(b), the141

forth order diffusion graph becomes fully connected. When the order goes to infinity, it corresponds142

to the convergence point of a random walk.143

4.2 Text Embedding144

A word sequence t =< w1, · · · , w|t| > is mapped into a set of dt-dimensional real-valued vectors145

< w1, · · · ,w|t| > by looking up the word embedding matrix Ew. Here Ew ∈ R|w|×dt is randomly146

initialized and further learned during training and |w| is the vocabulary size of the dataset. We can147

obtain a simple text representation xi ∈ Rdt of vertice vi by taking the average of word vectors.148

Although the word order is not preserved in such representation, [5] has shown that word embedding149

average models can perform surprisingly well and avoid over-fitting efficiently in many NLP tasks.150

Given the fixed-length vectors of each text, the input texts can be represented by matrix X ∈ RN×dt151

where the i-th row is xi.152

x =
1

c

|t|∑

i=1

wi, X = x1 ⊕ x2 ⊕ · · · ⊕ xN .

However, in this text representation matrix each embedding is completely independent without153

leveraging the semantic relatedness indicated from the graph. To address this issue, we employ154

diffusion convolutional operator [1] to measure the level of connectivity between any of two texts in155

the netwrok.156

Let P∗ ∈ RN×H×N be a tensor containing H hops of power series of P, i.e., the concatenation of157

{P0,P1, · · · ,PH−1}. V∗t ∈ RN×H×d is the tensor version of text embedding represention after158

diffusion convolutional operation. The activation V
∗(i,j,k)
t for node i, hop j, and feature k is given by159

V
∗(i,j,k)
t = f(W(j,k) ·

N∑

n=1

P∗(i,j,n)X(n,k)) (2)

where W ∈ RH×d is the weight matrix and f is a non-linear differentiable function. The activations160

can be expressed equavalently using tensor notations.161

V∗t = f(W �P∗X) (3)

where � represents element-wise multiplication. This tensor representation considers all paths162

between two texts in the network and thus includes long-distance semantic relationship. With longer163
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Figure 2: A simple example of diffusion process
in a directed graph.

Initially the network only has a few active ver-
tices, due to sparsity. Through the diffusion
process, information is delivered from active ver-
tices to inactive ones by filling information gaps
between vertices [1]; vertices may be connected
by indirect, multi-step paths. This process is
the same as the molecular diffusion in a fluid,
where particles move from high-concentration
areas to low-concentration areas. We introduce
the transition matrix P and its power series for
the diffusion process. The directed graph with
four vertices and normalized weights in Figure 2
shows the smoothing effect of the high order of
P in diffusion process. The original graph only
has edges e1,2, e1,3, e3,4 and e1,4, while the in-
formation gaps between other vertices are not depicted. The diffusion process can smooth the whole
graph with the higher order of P, so that indirect relationships, such as (n2, n4), can be connected
(via a multi-step diffusion process). As we can see from Figure 2(b), the fourth-order diffusion
graph is fully connected. The number associated with each edge represents the transition probability
from one vertex to another within exactly 4 steps. The network will be stable when information is
eventually evenly distributed.

4.2 Text Embedding

A word sequence t =< w1, · · · , w|t| > is mapped into a set of dt-dimensional real-valued vectors
< w1, · · · ,w|t| > by looking up the word embedding matrix Ew. Here Ew ∈ R|w|×dt is initialized
randomly, and learned during training, and |w| is the vocabulary size of the dataset. We can obtain a
simple text representation xi ∈ Rdt of vertex vi by taking the average of word vectors. Although
the word order is not preserved in such a representation, taking the average of word embeddings
can avoid over-fitting efficiently, especially when the data size is small [23]. Given the fixed-length
vectors of each text, the input texts can be represented by matrix X ∈ RN×dt , where the i-th row is
xi.

x =
1

|t|

|t|∑

i=1

wi, X = x1 ⊕ x2 ⊕ · · · ⊕ xN . (2)

Alternatively, we can use the bi-directional LSTM [7] which processes a text from both directions to
capture long-term dependencies. Text inputs are represented by the mean of all hidden states.

−→
h i = LSTM(wi,hi−1),

←−
h i = LSTM(wi,hi+1) (3)

x =
1

|t|

|t|∑

i=1

(
−→
h i ⊕

←−
h i), X = x1 ⊕ x2 ⊕ · · · ⊕ xN . (4)

However, in this text representation matrix for both approaches, the embeddings are completely
independent, without leveraging the semantic relatedness indicated from the graph. To address this
issue, we employ the diffusion convolutional operator [2] to measure the level of connectivity between
any of two texts in the network.

Let P∗ ∈ RN×H×N be a tensor containing H hops of power series of P, i.e., the concatenation of
{P0,P1, · · · ,PH−1}. V∗t ∈ RN×H×d is the tensor version of the text embedding representation,
after the diffusion convolutional operation. The activation V

∗(i,j,k)
t for vertex i, hop j, and feature k

is given by

V
∗(i,j,k)
t = f(W(j,k) ·

N∑

n=1

P∗(i,j,n)X(n,k)), (5)

where W ∈ RH×d is the weight matrix and f is a nonlinear differentiable function. The activations
can be expressed equivalently using tensor notation

V∗t = f(W �P∗X), (6)
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Figure 3: An illustration of our framework for textual network embedding.

where � represents element-wise multiplication. This tensor representation considers all paths
between two texts in the network, and thus includes long-distance semantic relationship. With longer
paths discounted more than shorter paths, the text embedding matrix Vt is given by

Vt =

H−1∑

h=0

λhV
∗(:,h,:)
t . (7)

Through the diffusion process, text representations, i.e., rows of Vt are not embedded independently.
With the whole graph being smoothed, indirect relationships between texts that are not on the same
edge can be considered to learn embeddings.

4.3 Objective Function

Given the set of edges E, the goal of DMTE is to maximize the following overall objective function:

L =
∑

e∈E
L(e) =

∑

e∈E
αttLtt(e) + αssLss(e) + αstLst(e) + αtsLts(e) (8)

where αtt, αss, αst, and αts control the weight of corresponding objectives. The overall objective
consists of four parts: Ltt(e) denotes the objective for text embeddings, Lss(e) denotes the objective
for structure embeddings, Lst(e) and Lts(e) denote the objectives that consider both structure and
text embeddings to map them into the same representation space. We assume the network is directed,
since the undirected edge can be considered as two opposite-directed edges with equal weights. Then
each objective is to measure the log-likelihood of generating vi conditioned on vj , where vi and vj
are on the same directed edge:

Ltt(e) = si,j log p(v
t
i|vt

j) = si,j log
exp(vt

i · vt
j)∑

vt
k∈Vt

exp(vt
k · vt

j)
, (9)

Lss(e) = si,j log p(v
s
i |us

j) = si,j log
exp(vs

i · us
j)∑

vs
k∈Vs

exp(vs
k · us

j)
, (10)

Lst(e) = si,j log p(v
s
i |vt

j) = si,j log
exp(vs

i · vt
j)∑

vs
k∈Vs

exp(vs
k · vt

j)
, (11)

Lts(e) = si,j log p(v
t
i|us

j) = si,j log
exp(vt

i · us
j)∑

vt
k∈Vt

exp(vt
k · us

j)
. (12)

Note that p(·|us
j) computes the probability conditioned on the diffusion map of vertex vj , and p(·|vt

j)
computes the probability conditioned on the text embedding of vertex vj . Compared to using vs

j to
compute the conditional probability, the diffusion map us

j utilizes both local information and global
relations of vertex vj in the graph. We use vt

j instead of the diffusion map ut
j because the global

structural information is included during text embedding, with the diffusion convolutional operation.
Moreover the high-order proximity is preserved without using matrix factorization, which may be
computationally inefficient for large-scale networks.
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4.4 Optimization

Optimizing (8) is computationally expensive, since the conditional probability requires the summation
over the entire vertex set. In [17] negative sampling was proposed to solve this problem. For each
edge ei,j , we sample multiple negative edges according to some noisy distribution. Then during
training the conditional function p(vi|vj) can be replaced by

log σ(vi · vj) +

K∑

k=1

Evk∼Pn(v)[log σ(−vk · vj)], (13)

where σ(·) is the sigmoid function, K is the number of negative samples, and Pn(v) ∝ d3/4v is the
distribution of vertices with dv being the out-degree of vertex v. All parameters are jointly trained.
Adam [11] is adopted for stochastic optimization. In each step, Adam samples a mini-batch of edges
and then updates the model parameters.

5 Experiments

We evaluate the proposed method for the multi-label classification and link prediction tasks. We
design four versions of DMTE in our experiments: (i) DMTE without diffusion process; (ii) DMTE
with text embedding only; (iii) DMTE with bidirectional LSTM (Bi-LSTM); (iv) DMTE with
word average embedding (WAvg). In DMTE without diffusion process, the diffusion convolutional
operation is not added on top of the text inputs, i.e., the text embedding matrix Vt is directly replaced
by X in Eq. 2. In DMTE with text embedding only, the embedding of vertex vi is only vt

i instead of
the concatenation of vt

i and vs
i . In DMTE with Bi-LSTM, the input texts embedding matrix Xt is

obtained using Eq. 4. In DMTE with WAvg, the input texts embedding matrix Xt is obtained using
Eq. 2. We compare the four versions of DMTE model with seven competitive network embedding
algorithms. Experimental results for multi-label classification are evaluated by Macro F1 scores and
experimental results for link prediction are evaluated by Area Under the Curve (AUC).

Datasets We conduct experiments on three real-world datasets: DBLP, Cora, and Zhihu.

• DBLP [28] is a citation network that consists of bibliography data in computer science. In our
experiments, 60744 papers are collected in 4 research areas: database, data mining, artificial in-
telligence, and computer vision. The network has 52890 edges indicating the citation relationship
between papers.
• Cora [15] is a citation network that consists of 2277 machine learning papers in 7 classes. The

network has 5214 edges indicating the citation relationship between papers.
• Zhihu [26] is a Q&A based community social network in China. In our experiments, 10000

active users are collected as vertices and 43894 edges indicating the relationship. The description
of their interested topics are used as text information.

Baselines The following baselines are compared with our DMTE model:

• Structure-Based Methods: DeepWalk [20], LINE [27], node2vec [8].
• Structure and Text Combined Methods: TADW [33], Tri-DNR [19], CENE [26], CANE [30].

Evaluation and Parameter Settings For link prediction, we evaluate the performance with AUC,
which is widely used for a ranking list. Since the testing set only contains existing edges as positive
instances, we randomly sample the same number of non-existing edges as negative instances. Positive
and negative edges are ranked according to a prediction function and AUC is employed to measure
the probability that vertices on a positive edge are more similar than those on a negative edge. The
experiment for each training ratio is executed 10 times and the mean AUC scores are reported, where
the higher value indicates a better performance.

For multi-label classification, we evaluate the performance with Macro-F1 scores. We first learn
embeddings with all edges and vertices in an unsupervised way. Once the vertex embeddings are
obtained, we feed them into a classifier. The experiment for each training ratio is executed 10 times
and the mean Macro-F1 scores are reported where the higher value indicates a better performance.
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Table 1: AUC scores for link prediction on Cora.
% of edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
Deep Walk 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3
LINE 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3
node2vec 55.9 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2
TADW 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.4 92.7
TriDNR 85.9 88.6 90.5 91.2 91.3 92.4 93.0 93.6 93.7
CENE 72.1 86.5 84.6 88.1 89.4 89.2 93.9 95.0 95.9
CANE 86.8 91.5 92.2 93.9 94.6 94.9 95.6 96.6 97.7
DMTE (w/o diffusion) 87.4 91.2 92.0 93.2 93.9 94.6 95.5 95.9 96.7
DMTE (text only) 82.6 84.0 85.7 87.3 89.1 91.1 92.0 92.9 94.2
DMTE (Bi-LSTM) 86.3 88.2 90.7 92.7 94.1 94.8 96.0 97.3 98.1
DMTE (WAvg) 91.3 93.1 93.7 95.0 96.0 97.1 97.4 98.2 98.8

Table 2: AUC scores for link prediction on Zhihu.
% of edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
Deep Walk 56.6 58.1 60.1 60.0 61.8 61.9 63.3 63.7 67.8
LINE 52.3 55.9 59.9 60.9 64.3 66.0 67.7 69.3 71.1
node2vec 54.2 57.1 57.3 58.3 58.7 62.5 66.2 67.6 68.5
TADW 52.3 54.2 55.6 57.3 60.8 62.4 65.2 63.8 69.0
TriDNR 53.8 55.7 57.9 59.5 63.0 64.6 66.0 67.5 70.3
CENE 56.2 57.4 60.3 63.0 66.3 66.0 70.2 69.8 73.8
CANE 56.8 59.3 62.9 64.5 68.9 70.4 71.4 73.6 75.4
DMTE (w/o diffusion) 56.2 58.4 61.3 64.0 68.5 69.7 71.5 73.3 75.1
DMTE (text only) 55.9 57.2 58.8 61.6 65.3 67.6 69.5 71.0 74.1
DMTE (Bi-LSTM) 56.3 60.3 64.9 69.8 73.2 76.4 78.7 80.3 82.2
DMTE (WAvg) 58.4 63.2 67.5 71.6 74.0 76.7 78.5 79.8 81.5

We set the embedding of dimension d to 200 with ds and dt both equal to 100. The number of hops
H is set to 4 and the importance coefficients λh’s are tuned for different datasets and different tasks
with λ0 > λ1 > · · · > λH . αtt, αss, αts, and αst are set to 1, 1, 0.3 and 0.3 respectively. The
number of negative samples K is set to 1 to speed up the training process. The word embedding
matrix Ew, the structure embedding table Es,and the diffusion weight matrix W are all randomly
initialized with a truncated Gaussian distribution. All models are implemented in Tensorflow using a
NVIDIA Titan X GPU with 12 GB memory.

5.1 Link Prediction
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Figure 4: Performance over H .

Given a pair of vertices, link prediction
seeks to predict the existence of an unob-
served edge using the trained representa-
tions. We use Cora and Zhihu datasets for
link prediction. We randomly hold out a
portion of edges (%e) for training in an un-
supervised way with the rest of edges for
testing.

Tables 1 and 2 show the AUC scores of dif-
ferent models for %e from 15% to 95% on
Cora and Zhihu. The best performance is
highlighted in bold. As can be seen from
both tables, our proposed method performs
better than all other baseline methods. The
AUC gains of DMTE model over the state-
of-the-art CANE model can be as much as
4.5 and 6.8 on Cora and Zhihu respectively.
These results demonstrate the effectiveness
of the learned embeddings using the pro-
posed method on link prediction task. We observe that baselines incorporating both structure and text
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Table 3: Top-5 similar vertex search based on embeddings learned by DMTE.
Query: The K-D-B-Tree: A Search Structure For Large Multidimensional Dynamic Indexes.
1. The R+-Tree: A Dynamic Index for Multi-Dimensional Objects.
2. The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries.
3. Segment Indexes: Dynamic Indexing Techniques for Multi-Dimensional Interval Data.
4. Generalized Search Trees for Database Systems.
5. High Performance Clustering Based on the Similarity Join.

information perform better than those only utilizes structure information, which indicates that text
associated with each vertex helps to achieve more informative embeddings. The proposed approach
shows flexibility and robustness in various training ratios. As the portion of training edges gets larger,
the performance of our DMTE model steadily increases while other approaches suffer under either
low training ratio (such as CENE) or high training ratio (such as TADW).

Comparing the four versions of DMTE, DMTE with word embedding average as the text inputs has
the best performance on Cora at all training ratios and on Zhihu at low training ratios, while DMTE
with bidirectional LSTM as the text inputs has the best performance on Zhihu at high training ratios.
This is because when the training data is limited, the model with less parameters can successfully
avoid over-fitting and thus achieve better results. For larger networks like Zhihu with high training
data ratios, deep models (such as Bi-LSTM) with more parameters can be a good choice to encode
input texts. The model with the diffusion convolutional operation applied on text inputs performs
better than the model without the diffusion process, verifying our assumption that the diffusion process
can help include long-distance semantic relationship and thus achieves better embeddings. We also
observe that DMTE with text embeddings only performs better than some baseline methods but
worse than the other three DMTE variations, demonstrating the effectiveness of text embeddings and
the necessity of adding structure embeddings. Furthermore, DMTE with only the word-embedding
average as the text representation has comparable performance over baselines, demonstrating the
effectiveness of the redesigned objective function, which calculates the conditional probability of
generating vi given the diffusion map of vj .

Parameter Sensitivity Figure 4 shows the link prediction results w.r.t. the number of hops H
at different training ratios. The model we use here is DMTE(WAvg). Note that when H = 1 the
model is equivalent to DMTE without diffusion precess. As H gets larger, the performance of DMTE
increases initially then stops increasing when H is big enough. This observation indicates that the
diffusion process can help exploit the relatedness of any two vertices in the graph, however this
relatedness is neglectable when the distance between two vertices is too long.

5.2 Multi-Label Classification
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Figure 5: F1-Macro scores for multi-label
classification on DBLP.

Multi-label classification seeks to classify each ver-
tex into a set of labels using the learned vertex
representation as features. We use DBLP dataset
for multi-label classification. Here DMTE refers to
DMTE(WAvg). To maximally reduce the impact of
complicated learning approaches on the classification
performance, a linear SVM is employed instead of
a sophisticated deep classifier. We randomly sam-
ple a portion of labeled vertices with embeddings
(%l = {10%, 30%, 50%, 70%}) to train the classifier
with the rest vertices for testing.

Figure 5 shows the AUC scores of different models on
DBLP. Compared to baselines, the proposed DMTE
model consistently achieves performance improve-
ment at all training ratios, demonstrating that DMTE
learns high-quality embeddings which can be used di-
rectly as features for multi-label vertex classification.
The F1-Macro score gains of DMTE over baseline
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CANE indicates that the embeddings learned using global structure information is more informative
than only considering local pairwise proximity. We also observe that structure-based methods perform
much worse than methods based on structure and text combined, which further shows the importance
of integrating both structure and text information in textual network embeddings.

5.3 Case Study

To visualize the effectiveness of the learned embeddings, we retrieve the most similar vertices and
their corresponding texts for a given query vertex. The distance is evaluated by cosine similarity
based on the vectorial representations learned by DMTE. Table 3 shows the texts of the top 5 closest
vertex embeddings of a query paper in DBLP dataset. In the graph, vertices 1, 2, 4, and 5 are all
neighbors of the query while vertex 3 is not directly connected with the query vertex. As observed,
direct neighbors vertices 1 and 2 are not only structurally but also textually similar to the query vertex
with multiple words aligned such as tree, index and multi-dimensional. Although vertex 3 is not
on the same edge with the query vertex, the semantic relatedness makes it closer than the query’s
direct neighbors such as vertex 4 and 5. This is an illustration that the embeddings learned by DMTE
successfully incorporate both structure and text information, helping to explain the quality of the
aforementioned results.

6 Conclusions

We have proposed a new DMTE model for textual network embedding. Unlike existing embedding
methods, that neglect semantic relatedness between texts or only exploit local pairwise relationship,
the proposed method integrates global structural information of the graph to capture the level of
connectivity between any two texts, by applying a diffusion convolutional operation on the text
inputs. Furthermore, we designed a new objective that preserves high-order proximity, by including a
diffusion map in the conditional probability. We conducted experiments on three real-word networks
for multi-label classification and link prediction, and the associated results demonstrate the superiority
of the proposed DMTE model.
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